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Abstract

A high-order harmonic spectral filter (HSF) is further studied using double Fourier series (DFS), which performs

filtering in terms of successive inversion of tridiagonal matrices with complex-valued elements. The high-order har-

monics filter equation is split into multiple Helmholtz equations. It is found that the filter provides the same order of

accuracy as the spectral filter in [J. Comput. Phys. 177 (2002) 313] that consists of the pentadiagonal matrices with real-

valued elements. The advantage of the filter over the previous one lies on the simplicity and easiness of numerical

implementation or computer coding, just requiring the same complexity as Poisson�s equation solver. However, the

operation count associated with the filter increases by a factor of about 2. To circumvent the inefficiency while pre-

serving the simplicity, an easy way to construct pentadiagonal matrices associated with the biharmonic equation is

presented in which the tridiagonal matrices related with Poisson�s equation are manipulated. Computational efficiency

of the spectral filter is discussed in terms of the relative computing time to the spectral transform. It is revealed that the

computing cost (requiring OðN 2Þ operations with N being the truncation) for the spectral filtering, even with the

complex-valued matrices, is not significant in the DFS spectral model that is characterized by OðN 2 log2 NÞ operations.
Filtering with different DFS expansions is discussed with a focus on the accuracy and pole condition. It is shown that

the DFS violating the pole conditions produces a discontinuity at poles in case of wave truncation, and its influence

spreads over the globe. The spectral filter is applied to two kinds of uniform-grid data, the regular and the shifted grids,

and the results are compared with each other. The operator splitting (or spherical harmonics factorization) makes it

feasible to apply the finite difference method to the high-order harmonics filter with ease because only the five-point

stencil computations are required. The application could also be extended to other numerical methods only if the

Helmholtz equation solver is available.
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1. Introduction

High-order harmonic spectral filter with DFS was presented (hereafter referred to as HSF-DFS) for a
smoothing (or filtering) of spherical surface data [8]. HSF-DFS performs filtering in terms of inversion of

pentadiagonal matrices whose elements are real-valued DFS spectral coefficients associated with the high-

order implicit diffusion equation. The harmonic spectral filter with DFS, i.e., the Helmholtz equation

solver, can be found in [7]. DFS (high-order) harmonic spectral filter provides an isotropic filtering on the

sphere as the spherical harmonics filter [2,6,8,19,21] does. It requires only OðN 2Þ operations in spectral

space in contrast to OðN 3Þ operations needed for the spherical harmonics filter, where N is the truncation.

As the order of the filter (i.e., the order of the Laplacian operator) increases, a sharper cutoff of the high-

wavenumber spherical-harmonics component is achieved but the operation count increases almost linearly
with the order. Unlike the projection operators as in [6,23], the diffusive-type spectral filter such as HSF-

DFS cannot completely eliminate high-wavenumber spherical-harmonics components from the grid- or

wave-data. Applications to time-dependent nonlinear problems have shown that HSF-DFS is useful as a

numerical stabilizer for the DFS spectral model that is characterized by OðN 2 log2 NÞ operations, because it
can control the noises with computational efficiency without affecting the physics of the problem. It is

particularly useful, as discussed in [8], when an explicit incorporation of the scale-selective viscosity is not

feasible due to either a difficulty in numerical implementation or a restriction to the viscosity coefficient.

Though not shown, the spectral filter with pentadiagonal matrices may be extended to the mixed order
filter, i.e., the filter equation having multiple Laplacian operators with different order, only if the re-

quirement for the filter coefficients is satisfied [8]. The mixed order filter provides a more flexible, wave-

number-dependent smoothing effect that is not available for the usual single-harmonic-operator filter. An

arbitrary scale-selectivity can be accomplished only for the spherical harmonics filter [2,10,21]: Once the

spectral component is calculated, a filter of arbitrary functional form of the total wavenumber may be

implemented although the biharmonic diffusion (or viscosity) is most commonly used in the time-dependent

model [14,20,22].

The pentadiagonal matrices are the most important factors for the efficient high-order harmonic filter in
[8]. The matrices are, however, constructed via rather a complicated procedure and their elements include

many terms of fourth-order polynomials of the meridional wavenumber. As a result, though not serious, a

relatively long computer code is necessary for the filter. To keep the simplicity of the DFS model and at the

same time to provide an easy numerical implementation for practical use, it would be desirable to introduce

matrices associated with the filter as simple as possible unless the computational efficiency and accuracy are

lost. To meet this necessity, in this study a new HSF-DFS is proposed that performs in terms of successive

inversion of the Helmholtz equations with the complex-valued coefficients. The filter equation with a high-

order Laplacian-operator type is split into multiple Helmholtz equations. The matrices that should be
prepared for this filter are all tridiagonal ones associated with the Laplacian operator instead of the pen-

tadiagonal matrices. Therefore, the new filter can be implemented with much more ease than the filter in [8].

However, the computing time is nearly doubled because the matrix elements are complex valued. To cir-

cumvent this inefficiency while preserving the simplicity, another high-order filter is designed which inverts

pentadiagonal matrices. The pentadiagonal matrices in the filter are the same as those in [8]. The new aspect

associated with the filter is the simplicity and easiness to construct the matrices. The idea of splitting of

high-order harmonic operator into simple Helmholtz equations may be extended to other numerical

methods, e.g., finite difference method and finite element method, because only the second order differential
equations (Helmholtz equations) are solved.

In pursuit of an efficiency and accuracy, the double Fourier series has been applied to various problems

(e.g. [9,16]). This reflects a high potential of the DFS spectral method as a promising alternative to the

spherical-harmonics approach in various fields. When selecting the basis functions for the DFS spectral

method, the pole conditions are of primary importance. In the case of basis functions violating the pole
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conditions [1,3,17,25], a discontinuity of the data field may occur at poles. Since the basis function is of

global-defined, the influence due to discontinuity may spread over the sphere. In spite of the importance,

such an issue has not been reported in detail.
The paper is organized as following. In the next section, a new high-order HSF-DFS is presented for the

uniform spherical grid systems, the regular and shifted grids. The issue of completeness for the DFS ex-

pansion is discussed along with an effective way for the spectral transform in the case where the polar

singularity exists. In Section 3 tests with the spherical harmonics are given. Two DFS methods are com-

pared in some detail with a focus on the influence of the truncation. Section 4 is devoted to the derivation of

a simple way to construct the pentadiagonal matrices for the efficient HSF-DFS used in [8]. Summary and

conclusions are presented in the final section.
2. High-order harmonic spectral filter with tridiagonal matrices

2.1. High-order harmonic filter equation and the uniform-grid system

The harmonic filter equation of order q (being a positive integer) over a unit sphere is written as

½1þ mð�1Þqr2q�w ¼ g; ð2:1Þ

where

r2 � 1

sin/
o

o/
sin/

o

o/
þ 1

sin2 /

o2

ok2

with k being longitude and / ¼ p=2þ latitude, respectively, and m is a positive-valued filter coefficient. The

variable gðk;/Þ is a given forcing function and wðk;/Þ is the filtered function. If the forcing function gðk;/Þ
is real (complex), wðk;/Þ must be real-valued (complex-valued) in the filter equation. With the sign of m
given negative (2.1) becomes a reverse diffusion equation, which is used in various problems, e.g., the

chemical reactions including the upgradient diffusion [12] or the image processing [4].

It is assumed that gðk;/Þ and wðk;/Þ are defined at grid points with a uniform longitude–latitude

spacing. Fig. 1 illustrates two kinds of uniform latitude–longitude grid on a spherical surface, which are
different from each other in the meridional location of grid points. One is the regular grid system including

the poles and the Equator while the other is the shifted grid system where the poles and the Equator are not

the data point. For convenience, we refer to the former as R-grid and the latter S-grid, respectively. R-grid
Fig. 1. Spherical grid system with uniform angular spacing. The data points include the equator and poles for (a), but not for (b).
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is of a very familiar structure because most of the global dataset used for the weather and climate analysis

are arranged in this form [11], while S-grid is mainly used in numerical models [1,6–9,17,23]. The filter

operator in (2.1) can be split into multiple Helmholtz equations with complex coefficient, i.e.,

½1� c1r2�½1� c2r2� � � � ½1� cqr2�w ¼ g; ð2:2Þ

where

cp ¼ m1=q exp
spiþ 2pðp � 1Þi

q

� �
ði ¼

ffiffiffiffiffiffiffi
�1

p
; p ¼ 1; 2; . . . ; qÞ; ð2:3Þ

with s ¼ 0 ðs ¼ 1Þ for q ¼ odd (even), respectively. Complex constants cp are obtained as the solution of

cq þ mð�1Þq ¼ 0, where the subscript p denotes the pth solution.

Filtering of gðk;/Þ is accomplished by successive q-times inversions of the Helmholtz equations with

complex coefficient, starting from

½1� c1r2�w1 ¼ g; ð2:4Þ

where

w1 ¼ ½1� c2r2� � � � ½1� cqr2�w: ð2:5Þ
2.2. Double-Fourier-series expansion and completeness

In this study, any scalar function, e.g., gðk;/Þ is defined at the sampling points ðkk;/jÞ with uniform

longitude–latitude spacing ðK ¼ 2N ; N ¼ evenÞ

kk ¼ 2pk=K; k ¼ 0; 1; . . . ;K � 1;

/j ¼ pj=N ; j ¼ 0; 1; . . . ;N for R-grid;

/j ¼ pðjþ 0:5Þ=N ; j ¼ 0; 1; . . . ;N � 1 for S-grid:

ð2:6Þ

It is obvious that gðkk;/0Þ and gðkk;/N Þ are independent of k for the R-grid, because they represent the

same data point. Note that the actual number of data points is KðN � 1Þ þ 2 and KN for the R-grid and

S-grid, respectively.

Let fgcmð/Þ; gsmð/Þg be the zonal cosine and sine transform of gðk;/Þ:

gðk;/Þ ¼
XK=2
m¼0

gcmð/Þ cosmkþ
XK=2�1

m¼0

gsmð/Þ sinmk; ð2:7Þ

where m is the zonal wavenumber. Hereafter, the superscripts �c� and �s� are dropped for convenience. The

boundary condition at poles for gmð/Þ in [6] is schematically illustrated in Fig. 2. The simplest meridional

expansion functions appropriate for the pole conditions are as follows [6–8]:

gmð/Þ ¼

PNo

n¼0 gn;m cos n/ for m ¼ 0;PNs

n¼1 gn;m sin n/ for odd m;PNc

n¼1 gn;m sin/ sin n/ for even mð6¼ 0Þ:

8<
: ð2:8a; b; cÞ

The number of meridional expansion coefficients must be given as large as can guarantee the com-

pleteness of the Fourier expansion (that is, as can reconstruct accurately the given grid-data with the

expansion coefficients)



Fig. 2. Schematic illustration of the necessary boundary conditions at poles [6] for the zonal Fourier transform of a scalar variable,

gmð/Þ. The dark region indicates the negative value, and the wavy structure in the meridional direction is chosen arbitrarily. Con-

sidering a great-circle arc (from A to B) passing over the pole, both gm and its meridional derivative vanish for even mð6¼ 0Þ, while gm
vanishes but the derivative does not for odd m. Pole conditions for m ¼ 0 are the reversed sense of the odd-m case.
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ðNo;Ns;NcÞ ¼
ðN ;N � 1;N � 1Þ for R-grid;
ðN � 1;N ;NÞ for S-grid:

�
ð2:9Þ

The total number of expansion coefficients is

No þ 1þ NsðK=2� 1Þ þ NcK=2; ð2:10Þ

which gives KðN � 1Þ þ 2 and KN for the R-grid and S-grid, respectively. It is worthy of noting that the

number of expansion coefficients are exactly the same as that of the physical data points. This means the

appropriateness of the wave truncation or the equivalence of informations available from both data. In

other words, the Parseval identity holds for the case of DFS spectral expansion on the sphere, as was il-

lustrated in [6] in the form of global averaging of a quadratic term. As will be stated in appendix, the parity

function for even zonal wavenumber does not cause the aliasing.

Another type of double Fourier series, introduced by Orszag [17] and used for Poisson�s equation by Yee
[25], may be applied to the filter equation, though not satisfying the pole conditions for even mð6¼ 0Þ:

gmð/Þ ¼
PNo

n¼0 g
�
n;m cos n/ for even m;PNs

n¼1 gn;m sin n/ for odd m;

(
ð2:11a; bÞ

where the superscript �*� was used to discern from the spectral coefficients for modified sine series in (2.8c).

The truncation limits must be given the same as in the case of (2.8).
Spectral coefficients are obtained by usual half-ranged cosine or sine transform [18]. For the modified

sine series (2.8c), a variable transform gðSÞm ð/Þ � gmð/Þ= sin/ must be done to facilitate the fast sine

transform. However, this cannot be applied to the R-grid because the division by sin/ is impossible at

poles. This difficulty is overcome by replacing the modified sine series by cosine series, which is presented in

Appendix A along with the issue of pole condition for the cosine series.

It is emphasized that for S-grid system, unlike the R-grid system presented in Appendix A, the cosine

series is not equivalent to the modified sine series. In case where the modified sine series is replaced by the

cosine series with the recursion relations as in (A.2a) and (A.2b), the largest wavenumber Noð� N � 1Þ of
(2.11a) that should be the same as ðNc þ 1Þ, becomes greater than the grid number N between poles by 2.

This gives rise to an aliasing. With only the last wave components dropped, the modified sine series

becomes equivalent to the cosine series. This invites a difference in accuracy between the two series:
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the modified sine series must be more accurate than the cosine series to the extent that the largest wave

components sin/ sinðN � 1Þ/ and sin/ sinN/ project on to the data field. Tests on the aliasing will be

given in the following section.

2.3. Inversion of Helmholtz equation with a complex coefficient

Solution method of the Helmholtz equation with a complex coefficient is basically the same as that

having a real-valued coefficient. One major difference is the computational aspect that more operations and

array space are needed in the present case, because the variables must be defined in complex-valued array.

During the inversions in (2.2), the solution of a Helmholtz equation is substituted in the next inversion step

as a forcing function. While the new forcing function may become complex-valued (i.e., if c1 is complex, w1

in (2.4) is complex even when g is real), the final solution associated with the last inversion step, i.e., the

filtered function w must be real valued. Therefore, the filtered function corresponds to the real part of the

solution for the last inversion step.

As a strategy to optimize the computations involved in the filter equation (2.2), it would be desirable to

filter two variables at the same time. This is done by combining two variables into a complex variable for

zonal sine- or cosine-Fourier transforms, separately. More conveniently, the zonal cosine and sine trans-

form of a variable, say fgcmð/Þ; gsmð/Þg, may be combined into a complex column vector. By doing so, the

operation count for the new method can be suppressed to be about two times of the pentadiagonal-matrix
case in [8].

As was shown in [6,7,25], the Helmholtz equation in (2.4) is multiplied by sin2 / and then substituted

with the DFS expansion to yield the tridiagonal matrix equations for odd and even n, separately

½A� c1D�w ¼ Ag; ð2:12Þ

where the matrices A and D are tridiagonal matrices, and w and g being the column vectors consisting of the

spectral components. The sizes of A and D are given in Table 1, which depend on both the grid system and

the expansion functions. The matrix components for A and D are easily calculated with recursion formula

of the trigonometric functions. To facilitate an immediate use the matrix components are presented in
Fig. 3. With c1 being complex valued, the matrix Hð� A� c1DÞ becomes also complex.

The global integral of w1ðk;/Þ (and also w) should be the same as that of gðk;/Þ. Thus, as was done in
[7], after the inversion is finished, the component ðw1Þ0;0 is modified so that the global integral is the same

for both variables. Since none of the expansion functions in (2.8a) alone cannot represent the global-mean

unlike the spherical harmonics expansion, ðw1Þ0;0 is modified using ðw1Þn;0 with n being even:

g½ � �
XNH

n¼1

ðw1Þ2n;0
1� ð2nÞ2

) ðw1Þ0;0; ð2:13Þ
Table 1

Size of matrices A and D of the tridiagonal system for even n with the definition given by N2 ¼ N=2, N2p ¼ N2 þ 1 and N2m ¼ N2 � 1

m R-grid S-grid

Cheong [Eq. (2.8)] Yee–Orszag [Eq. (2.11)]

0 N2p � N2p N2p � N2p N2 � N2

1; 3; . . . N2m � N2m N2m � N2m N2 � N2

2; 4; . . . N2m � N2m N2p � N2p N2 � N2

Matrix size with odd n is N2 � N2 for all cases.



Fig. 3. (a, b) Matrix components of A for cosine series. (c) Matrix components of A for sine and modified sine series. All other elements

not shown above are 1/2 and )1/4 for the diagonal and off-diagonal components, respectively. (d) Matrix components of D. For sine
and cosine series an ¼ ðn� 1Þðn� 2Þ=4, bn ¼ �n2=2� m2 and cn ¼ ðnþ 1Þðnþ 2Þ=4, while for the modified sine series (2.8c)

an ¼ nðn� 1Þ=4, bn ¼ �n2=2� m2 and cn ¼ nðnþ 1Þ=4. For more details refer to [6]. The column vector associated with the matrix is

shown on the right-hand side of each figure.
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g½ � ¼
XNH

n¼0

g2n;0
1� ð2nÞ2

; ð2:14Þ

where NH ¼ No=2 and the square bracket denotes the global averaging. This procedure is necessary only at

the last Helmholtz-equation solver.
3. Tests results

3.1. Tests with spherical harmonic functions

Accuracy of Poisson�s equation solver using DFS was presented by Cheong [6] for (2.8) and by Yee [25]

for (2.11). The accuracy of the Helmholtz-equation solver may be basically the same as the Poisson�s
equation. For the tests on the HSF-DFS, the forcing function for which the solution of (2.1) is known is

introduced

g ¼ wþ mG; ð3:1Þ
w ¼ ð1þ cos/Þðsin/Þm cosmk; m 6¼ 0;
cos/þ cos 2/; m ¼ 0;

�
ð3:2Þ
G ¼ cqm þ cqmþ1 cos/
� �

ðsin/Þm cosmk; m 6¼ 0;
ð�2Þq cos/þ ð�6Þqð1þ 3 cos 2/Þ; m ¼ 0;

�
ð3:3Þ

where cm ¼ �mðmþ 1Þ. The computations for tests are carried out with double precision. For each zonal

wavenumber, the normalized error is evaluated by

E ¼ ½jwc � wj�
½jwj� ; ð3:4Þ



Fig. 4. Comparison of the harmonic spectral filters for K � J ¼ 256� 128. The thin (thick) line represents the filter with pentadiagonal

(complex tridiagonal) matrix. (a), (b) and (c) correspond to the second, third- and fourth-order filter (i.e., q ¼ 2, 3 and 4), respectively.

The abscissa denotes the zonal wavenumber and the filter coefficients are given as 100=ð128� 129Þq.
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where the square bracket implies the global mean and wc is the inverted value. In Fig. 4, log10 E is plotted

for the harmonics order of 2, 3 and 4, where the filter viscosity is given m ¼ 100=½NðN þ 1Þ�q with N ¼ 128.

Note that the method of [8] and the new method give almost the same results with the accuracy being

slightly increased for the new method. For low zonal wavenumbers, the error decreases as the harmonics

order increases because of decreasing filter viscosity at high orders. This is consistent with the case of bi-
harmonic equation solver shown in [6] where the error associated with the inversion of Helmholtz–Poisson

type becomes large as the relative importance of the biharmonic- to the harmonic term increases.

In Fig. 5, the errors for the two types of DFS are compared for different grid systems, where the in-

version is carried out with the new method. The resolution is the same as in Fig. 4 and the fourth-order filter

is used. Since for m ¼ odd and m ¼ 0 the expansion functions are the same, the errors for DFS used in [6]

(denoted as �Cheong S-grid�) are shown only for m ¼ evenð6¼ 0Þ. The errors exhibit the same order for all

cases except for �Cheong S-grid� case which shows a slightly improved accuracy compared to other cases.

(The lines for R-grid are almost overlapped to the thick line.)
Fig. 5. Comparison of the harmonic spectral filters for different DFS and grid system, where m is the zonal wavenumber. All filters

consist of tridiagonal matrix solver and the order of the filter is 4. The resolution and filter coefficient are the same as in Fig. 4.
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3.2. Difference between two DFSs in (2.8) and (2.11)

It is not considered that the differences shown in Figs. 4 and 5 are quite significant because the differences
are observed where the errors are close to the machine roundoffs. Rather, it would be meaningful to see a

difference for a general case, e.g., an arbitrary forcing function. It is of particular interest in this section to

see the differences between the expansion functions (2.8) and (2.11) for S-grid. As stated in Section 2, the

modified sine series (2.8c) can resolve more wave components for S-grid than the cosine series by two level.

To demonstrate this, the Legendre function Pm
mþ2ðlÞ with l being sine of latitude is adopted as the forcing

function. The function becomes an aliased mode because the Gaussian quadrature is exact up to the

polynomial degree of N � 1 when the number of grids between poles is set N . For a clarity, N is given as

small as possible, e.g., N ¼ 8, for which the aliasing occurs with m > 5. The error measure log10 E is pre-
sented in Table 2(a). The difference between two expansions is clear: for m ¼ 6, the error for (2.8c) is near

the machine rounding while the error for (2.11a) is larger than Oð10�2Þ. As an extension to an arbitrary field

for comparison, a forcing function of cosine bell is introduced

gðrÞ ¼ ½1þ cosðpr=rmÞ�=2; r6 rm;
0; r > rm;

�
ð3:5Þ

where rm ¼ p=10 and r is the arclength between the grid point and the center ð180E; 10NÞ. The forcing

function is filtered with q ¼ 4, i.e., a fourth-order filter, where the filter coefficient is the same as in Fig. 5.

The normalized global average of difference between two filtered fields is shown in Table 2(b). The dif-

ference for N ¼ 8 is as large as Oð10�2Þ and it decreases exponentionally as the resolution increases,

showing a convergence property typical of the spectral method.

It is often necessary to truncate a part of the wave coefficients when reconstructing the grid point value
through spectral transform. The most important example of this may be the 2/3 rule for the evaluation of

quadratic terms [5–7,10,14,19,23]. Unlike the spherical-harmonics spectral method the expansion functions

in (2.8) and (2.11) are not isotropic although the filtering with them based on the Laplacian operator

provides isotropic results on the sphere as shown in [8]. Thus, elimination of the high wavenumber com-

ponents may result in the anisotropic field. In case of the DFS in (2.11) with the R-grid system the re-

constructed grid point data after the truncation becomes multi-valued at poles. However, since the pole is a

grid point for R-grid, any function must be single-valued there. Thus, the truncation may produce un-

physical grid data unless an appropriate filter, not a diffusive-type but a spherical-harmonics projection
operator, is applied to the DFS spectral space before transforming to the grid data. (The unphysical grid

data at poles may be used in computation without any problem because the spherical grid data are handled

usually as two dimension array.) To use the spherical-harmonics projection, the eigenvectors of the matrix

D�1A associated with the R-grid must be calculated and stored as was done in [6]. The projection operator is

computationally inefficient, requiring OðN 3Þ operations. Another approach is attempted by [15] to avoid
Table 2

(a) Logarithmic error ðlog10 EÞ associated with the fourth-order harmonic filtering (inversion) of the Legendre function Pm
mþ2ðlÞ with l

being sine of latitude. The resolution for the test is set K ¼ 16. (b) Normalized difference between the filtered fields of cosine bell in (3.5)

by the expansions (2.8) and (2.11), respectively

m Cheong [Eq. (2.8)] Yee–Orszag [Eq. (2.11)] m Normalized difference

(a) (b)

0 )15.06 )15.06 8 0.108E) 01

2 )15.13 )15.12 16 0.365E) 03

4 )14.42 )14.37 32 0.119E) 04

6 )13.11 )1.78 64 0.209E) 05

8 )1.47 )1.01 128 0.104E) 06
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the discontinuity at poles and anisotropicity caused by the truncation for the R-grid system, where the

truncated wave data are transformed in meridian to the grid data and then the projection is carried out.

For the DFS in (2.11), another undesirable problem is expected to be observed near the poles because the
remaining components after truncation for even zonal wavenumber other than zero do not satisfy the pole

condition in (A.4). In relation with the truncation, it would be of interest to focus on the case where both

the truncation and the filtering are done. It is desired that the results are the same regardless of the order as

in the spherical-harmonics model.

In Fig. 6, such issues are well illustrated: the field of cosine bell shape (Fig. 6(a)), as defined by (3.5), with the

resolution of N ¼ 32 ð� 64� 32gridsÞ is transformed to two different wave spaces using (2.8) and (2.11),

respectively. Then the amplitude of thewave component ismade zero for eitherm > N=2 or n > N=2. The grid
data transformed from the remaining wave components are presented in panels 6b and 6c. Systematic noise-
like patterns of small scale are found in Fig. 6(c) while not in the panel 6b. Panels 6d and 6e compare the results

of both truncation and filtering. Note that in panel 6d the patterns are almost the same for the case of fil-

tering + truncation and the reversed order case, truncation +filtering, while in panel 6e the patterns are

changed to a large extent. The noises near poles inFig. 6(c) and the larger difference found inFig. 6(e) are direct

consequence of the violation of the pole condition by truncating a part of the expansion coefficients. Note that

in Fig. 6(e) the filtering alleviates the discontinuity at poles to a considerably lower level.

3.3. Test on the filter equation with m < 0 (or reverse diffusion)

The filter in (2.1) gives a selective damping with the smaller scales are more damped than the larger. In

this section, it will be focused on the filter equation with m < 0. (This may be called as a reverse diffusion, or

a sharpening process instead of smoothing.) If the variables are expanded with the spherical harmonics, the

spherical-harmonics coefficient of the filtered variable wl;m is given as

wl;m ¼ gl;m
Rl;q

; ð3:6Þ
Rl;q ¼ 1þ m½lðlþ 1Þ�q; ð3:7Þ
where gl;m is the spherical-harmonics coefficient of the forcing function gðk;/Þ and lð¼ 0; 1; 2; . . .Þ is the

total wavenumber-like index. In principle, the filtered function can be calculated for an arbitrary filter
viscosity m unless Rl;q vanishes. The same must be true for the DFS expansion case. For the DFS method,

however, the calculation of the same formula as in (3.7) does not appear explicitly, because the filtering is

performed in terms of matrix inversion. Instead, the singularity will be reflected as either the vanishing

diagonal components or off-diagonal dominance.

TheDFSof (2.8) is applied to the filter equationwith m ¼ �100= NðN þ 1Þ½ �q forN ¼ 64.With this viscosity,

the response function Rl;q does not vanish for any l and q. The results are presented in Table 3, where the

logarithmof the error ðlog10 EÞ is shown for some selected zonal wavenumbers. The errors are almost the same

as in Figs. 4 and 5. To see how the filter responses if the filter coefficient is taken such that the denominator
vanishes, the same inversion as in Table 3 is carried out with m ¼ �1= ðN=2ÞðN=2þ 1Þ½ �q. It is found that the

inversion is carried out without numerical overflow, but the errors become as large as the order of unity.

3.4. Inversion with a finite difference approximation in meridional direction

Since the high-order filter equation is solved in terms of successive inversion of the Helmholtz equation,

the finite difference method (FDM) can also be applied to this problem. Although the main concern of this

paper is the DFS spectral method, the solution of (2.1) is obtained with a finite difference approximation to
demonstrate that the operator splitting method shown in Section 2 is quite useful. When a standard FDM is



Fig. 6. (a) A cosine-bell shape function centered at (180E, 10N) with contour interval (CI) of 0.15 (distortion of the field is due to the

map projection). (b) Truncated field using DFS in (2.8), where CI¼ 0.1 for positive values but broken lines are drawn at )0.0035,
)0.0105 and )0.021. (c) Same as (b) except DFS of (2.11). (d) Thick broken lines (thin solid lines) with CI¼ 0.1 represent the result of

truncation+ filtering (filtering+ truncation) with the use of (2.8). (e) The same as (d) but using (2.11).
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Table 3

Logarithmic error ðlog10 EÞ associated with the filter equation with a negative coefficient for the resolution of N ¼ 64, where q rep-

resents the order of the filter equation

m q ¼ 1 q ¼ 2 q ¼ 2 q ¼ 4

0 )14.0 )14.1 )14.3 )14.4
1 )14.5 )14.7 )15.0 )15.1
2 )14.5 )14.6 )15.0 )15.2
10 )13.6 )14.1 )14.8 )15.1
20 )12.8 )13.4 )14.5 )15.0
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applied, the Helmholtz equation yields a huge block-diagonal matrix. To simplify the problem, the FDM is

used only in the meridional direction. Finite difference approximation in meridional direction for the zonal

Fourier transform of (2.4) yields [13,24]

ðw1Þm;j �
c1

D2Sj�0:5

½Sjðw1Þm;jþ1 þ dm;jðw1Þm;j þ Sj�1ðw1Þm;j�1� ¼ gm;j ðj ¼ 1; 2; . . . ;NÞ; ð3:8Þ

where

D ¼ p=N ; ð3:9aÞ
Sj ¼ sin jD; ð3:9bÞ
dm;j ¼ �ðSj þ Sj�1 þ D2S�1
j�0:5m

2Þ: ð3:9cÞ

As in DFS method, the global-mean correction should be done so that the global-means of the filtered

variable and the forcing function are the same. In the FDM, the global-mean is obtained by a weighted sum
of zonal-mean components

w0;j

"
þ
XN
j¼1

ðg0;j � w0;jÞWj

#
) w0;j; ð3:10aÞ
Wj ¼ ½cosðj� 1ÞD� cos jD�=2: ð3:10bÞ

Errors are evaluated using the forcing function given in (3.1)–(3.3) for the fourth-order filter with the

filter coefficient of m ¼ 100=½N=ðN þ 1Þ�q. For fixed resolution the error ðlog10 EÞ increases almost linearly

with the zonal wavenumber, reaching near )1 at the highest zonal wavenumber. The error is smallest at

zonal wavenumber of 0 or 1, which exhibits )11, )9, )7 and )5 for N¼ 128, 64, 32 and 16, respectively. The

overall error would be larger than these if the zonal differentiation is also carried out with FDM. This

method may be applicable to the FDM model on the sphere that incorporates the diffusion with a high-
order Laplacian-operator, e.g. [20].
4. A simple and efficient HSF with pentadiagonal matrices

4.1. Biharmonic operator and pentadiagonal matrices

The major advantage of the new method over the method in [8] is the clarity and simplicity in the aspect
of the numerical implementation for a practical use. The new method requires only the tridiagonal matrices
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that are used for the inversion of Poisson�s equation, therefore a rather complicated procedure to construct

the pentadiagonal matrices as in [8] can be avoided. However, the computing time increases by a factor of

about two, compared to the previous method.
In this section a high-order harmonic spectral filter, which is as simple as the new method and as efficient

as the filter in [8], is presented which inverts pentadiagonal matrices. The key aspect of the filter is to

construct the pentadiagonal matrices by manipulating the simple tridiagonal matrices in (2.12) of which

elements are illustrated in Fig. 3. For this purpose a second-order differential operator is defined

L Xf g � sin/
o

o/
sin/

o

o/
X : ð4:1Þ

With this operator, the biharmonic operator can be written as

r4X � 1

sin2 /
L
�

� m2
� 1

sin2 /
LfXmg
��

� m2Xm

�	
ð4:2aÞ

¼ �m2

sin4 /
L Xmf g
�

� m2Xm

�
þ 1

sin2 /
L

1

sin2 /

� 	
L Xmf g
�

� m2Xm

�
þ 1

sin4 /
L L Xmf gf � m2Xm



ð4:2bÞ

� 2

sin2 /
L1 L Xmf g
�

� m2Xm



;

L1 �
sin 2/

sin2 /

o

o/
; ð4:3Þ

where Xm is zonal Fourier transform of X and the operation of (4.1) to a quadratic term is used

L
1

sin2 /
X

� 	
¼ L

1

sin2 /

� 	
X þ 1

sin2 /
LfXg � 2L1fXg; ð4:4aÞ
L
1

sin2 /

� 	
�

�
� 2þ 4

sin2 /


: ð4:4bÞ

As shown in Eqs. (3.1)–(3.4) of [8], the filter operator (2.1) can be factorized into biharmonic and

harmonic equations. Using the operations in (4.2b), the biharmonic equation is replaced by the pentadi-

agonal matrices equation, e.g.,

sin4 / 1
�

þ c1r2 þ cr4
�
wðk;/Þ ¼ sin4 /gðk;/Þ; ð4:5aÞ
) Zw
�

¼ A2g
�
: ð4:5bÞ

The matrix Z with the size of N=2� N=2 is given as

Z ¼ A2 þ c1ADþ cD1D ðD1 � D� 2Aþ 4I � 4BÞ; ð4:6Þ

where I is unit diagonal and A and D are tridiagonal matrices shown in (2.12), and B is tridiagonal matrices
of which elements are given in Fig. 7. Z is pentadiagonal matrix which can be calculated with ease. It is

obvious that for the evaluation of Z one must prepare the matrices A, B and D with the size of

ðN=2þ 1Þ � ðN=2þ 1Þ. The simplicity of (4.6) is achieved by separating ðsin/Þ�2
from the operand in



Fig. 7. (a)–(b) Matrix components of B for cosine series. (c) Sine series. (d) Modified sine series. The elements are given by

an ¼ ðn� 2Þ=4, cn ¼ �ðnþ 2Þ=4, dn ¼ ðn� 1Þ=4 and en ¼ �ðnþ 1Þ=4.

H.-B. Cheong et al. / Journal of Computational Physics 193 (2003) 180–197 193
(4.2a), which would result in a full matrix A�1 when a variable such as ðsin/Þ�2X is expanded with DFS.

The pentadiagonal matrices Z in (4.6) should be identical to those obtained through a fourth-order dif-
ferentiation as presented in [8]. This was confirmed by a direct comparison of the elements. However, the

symmetric component for zonal-mean part is handled by the use of Legendre polynomials in [8]. In this

case, the performance of the filter in (4.5b) was tested for the same problem in (3.1)–(3.3) instead of

comparing the elements each other. The result showed the same order of accuracy as that given by the

Legendre polynomials.

4.2. Efficiency of the HSF with pentadiagonal matrices

As to the efficiency of the filter with pentadiagonal matrices, it would be helpful to check the relative

computing time to that needed for a spectral transform because the advantage of DFS model is characterized

by the applicability of the fast algorithm to the spectral transform. For this purpose, a high performance

computer NEC SX-5 was used, which consists of parallel vector processors with the vector register length of

512. The theoretical peak performance of a processor is 10 GFLOPS. The computations were performed on a

single processor. Table 4 compares the real execution time for a spectral transform and a third-order ðr6Þ
spectral filtering. The truncation is given as in Section 2. That is, all wave components in (2.9) are retained.

Note that the computing time for the spectral transform is considerably larger than that for the spectral fil-
tering, typically by four or five times. The difference in computing time increases with the resolution. For the
Table 4

Real execution time for a spectral transform and a third-order spectral filtering, where NðKÞ is the maximum wavenumber (the number

of zonal grid points)

ðN ;KÞ Spectral transform Spectral filtering ðr6Þ

ð256; 512Þ 4.07 1.00

ð512; 1024Þ 17.85 4.11

ð1024; 2048Þ 81.50 17.40

ð2048; 4096Þ 366.77 75.61

The computing time is normalized by that of the spectral filtering for ðN ;KÞ ¼ ð256; 512Þ.
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time-dependent nonlinear problems, the number of spectral transforms is larger than that of the spectral

filtering [6–8,10,19]. For example, the time stepping of the vorticity equation with DFS spectral method re-

quires five spectral transforms and one spectral filtering per one timestep. In case of the shallow water
equations nine spectral transforms and three times of spectral filtering are necessary per one timestep. The

relative computing cost of the spectral filter varies depending on the order of the filter as well as the truncation.

For example, if the truncation is given by the 2/3 rule as is usually done in the nonlinear model, the relative

efficiency of the filter to the spectral transform is enhanced by a factor of 1.5 from those in Table 4. In any case,

the additional computing cost due to the spectral filtering (or smoothing), even with the complex-valued

matrices, is not significant for the DFS spectral transform method.
5. Summary and conclusions

In this paper the high-order harmonic spectral filter using double Fourier series on the sphere (HSF-

DFS) was presented. The main concern of the paper is the simplicity of the filter in the aspect of numerical

implementation for the practical use. The simplicity of the filter is achieved by either introducing a complex-

valued tridiagonal matrix or constructing a pentadiagonal matrix with simple manipulation of tridiagonal

matrices. For both cases, the direct fourth-order differentiation of the expansion functions shown in [8] is

not necessary. The filters are tested for two commonly used uniform-grid system, the R-grid and S-grid
(Fig. 1). Also presented is a detailed comparison of two double Fourier series focused on the pole con-

ditions schematically illustrated in Fig. 2. Main results of the paper are summarized as following.

1. HSF-DFS consisting of the complex-valued tridiagonal matrices is easy and simple to construct, which

consists of only the tridiagonal matrices required for the Poisson�s equation solver. In comparison with

the filter in [8], it provides the same order of accuracy whereas the computing time is doubled.

2. The pentadiagonal matrices for the filter in [8] can be constructed through simple manipulation of the

tridiagonal matrices in Figs. 3 and 7. This was made possible by separating the fourth-order differential

operator into three terms as shown in (4.2b). The computing cost for the spectral filtering (smoothing),
even with the complex-valued matrices, is not significant compared to the spectral transform that

constitute a central part of the DFS spectral transform method.

3. HSF-DFS can be applied to the uniform-grid systems regardless of inclusion of the poles as data points

with the same order of accuracy. For both grid systems, DFS constitutes the alias-free complete set for

the spectral expansion.

4. ADFSwhich incorporates the basis functions violating the pole conditions was found to be of no problem-

atic when it is used without wave truncation. However, in case where it is used with somewave components

eliminated, the small-scale noises are produced near poles due to the discontinuity of basis functions.
5. A reverse filter (diffusion), realized by using a negative diffusion coefficient, performs as accurate as the

usual filter only if the coefficient is determined in such a way that the response function in (3.7) does not

vanish.

With the operator splitting as in Section 2.1 the high-order HSF can be approximated with FDM or

others (e.g., finite element method) which are considered to be not suitable for high-order differentials,

because it is solved by inversion of successive Helmholtz equations without taking directly an approxi-

mation of the high-order differentials.
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Appendix A. Spectral transform of modified sine series and pole conditions

To avoid the singularity at the time of spectral transform in case of R-grid, the modified sine series for

even mð6¼ 0Þ are replaced by the cosine series with the maximum wavenumber increased by one-level

XNc

n¼1

gn;m sin/ sin n/ ¼
XNcþ1

n¼0

Cn;m cos n/; ðA:1Þ

where the completeness requirement of the cosine-series expansion as in (2.9), Nc þ 1 ¼ Noð� NÞ is satisfied,
implying that the modified sine expansion is free of the aliasing (being equivalence between two series). One

important issue for this replacement is that the cosine series should satisfy the pole condition as the

modified sine series does. Since the differentiation (see Fig. 2) at poles vanishes, the remaining one, the
condition of vanishing value at poles (i.e., gmð/Þ ¼ 0) is of concern.

Both coefficients gn;m and Cn;m are interrelated with the recursion relation, which yields for 26 n6N � 2

(the subscript m is dropped)

Cn ¼ gnþ1ð � gn�1Þ=2 ðA:2aÞ

or

gnþ1 ¼ gn�1 þ 2Cn; ðA:2bÞ

and for particular indices

C0 ¼ þg1=2; ðA:3aÞ
C1 ¼ þg2=2; ðA:3bÞ
CN�1 ¼ �gN�2=2; ðA:3cÞ
CN ¼ �gN�1=2: ðA:3dÞ

In the spectral transform procedure, the cosine transform is performed to get Cn;m as a first step, and the

coefficients gn;m are obtained using the recursion relations above either by descending or ascending order.

The results calculated with the ascending and descending order are the same, due to the constraint on the

spectral coefficients arising from the pole condition. The sum of the cosine expansion coefficients Cn;m must

vanish for each zonal wavenumber in order that the pole condition as in Fig. 2 is satisfied. The pole

condition can be written in terms of the expansion coefficients as

XNcþ1

n¼0

Cn;m

" #
ðn¼evenÞ

¼
XNc

n¼1

Cn;m

" #
ðn¼oddÞ

¼ 0: ðA:4Þ

This is trivially satisfied because gmð0Þ ¼ gmðpÞ ¼ 0 for even mð6¼ 0Þ in case of the R-grid, because the poles

are data point and the interpolativeness between the wave-components and the grid-point data are



Fig. 8. Fourier coefficients of the cosine expansion for the even zonal wavenumber. Extremely low resolution case in meridian is il-

lustrated for clarity. The curves represent the cosine waves, and the uppermost row denotes the grid-point data for the R-grid (the first

two maps) and S-grid (the last two). The grid-point values are either unity or zero. The mark ��� implies that the wave component is not

available due to the truncation limit. Note that the sum of wave components for R-grid (S-grid) vanishes (does not vanish). In each

case, the normalization factor is given the same for the lowest and the highest wavenumber component.
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guaranteed. The last two components gN�2 and gN�1 can be determined either by (A.2b) or Eqs. (A.3c) and

(A.3d), because the condition in (A.4) gives

CN�1 ¼ �
XN�3

n¼1

Cn

" #
ðn¼oddÞ

; ðA:5aÞ
CN ¼ �
XN�2

n¼0

Cn

" #
ðn¼evenÞ

: ðA:5bÞ

Note that if even one spectral component with non-zero value is removed from Cn;m , the pole condition

(A.4) is violated. With some components of Cn;m being deleted, the recursion relation (A.2a), (A.2b) be-

comes incomplete so that gn;m cannot be determined uniquely from Cn;m. The pole condition (A.4) is not

trivially satisfied in case of S-grid even when all the spectral components are incorporated because the poles

are not the data point. This situation is illustrated in Fig. 8 with simple grid systems.
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